
cloudlaunch Documentation
Release 4.0.0

CloudVE

Oct 15, 2021

Contents

1 Installation 3

2 Application Configuration 5

3 Authentication Configuration 7

4 Table of contents 9

i

ii

cloudlaunch Documentation, Release 4.0.0

CloudLaunch is a ReSTful, extensible Django app for discovering and launching applications on cloud, container, or
local infrastructure. A live version is available at https://launch.usegalaxy.org/.

CloudLaunch can be extended with your own plug-ins which can provide custom launch logic for arbitrary custom
applications. Visit the live site to see currently available applications in the Catalog. CloudLaunch is also tightly
integrated with CloudBridge, which makes CloudLaunch natively multi-cloud.

CloudLaunch has a web and commandline front-end. The Web UI is maintained in the CloudLaunch-UI repository.
The commandline client is maintained in the cloudlaunch-cli repository.

Contents 1

https://launch.usegalaxy.org/
https://github.com/galaxyproject/cloudlaunch-ui
https://github.com/CloudVE/cloudlaunch-cli

cloudlaunch Documentation, Release 4.0.0

2 Contents

CHAPTER 1

Installation

The recommended method for installing CloudLaunch is via the CloudLaunch Helm chart.

To install a development version, take a look at development installation page.

3

topics/production_server_mgmt.html
topics/development_server_installation.html

cloudlaunch Documentation, Release 4.0.0

4 Chapter 1. Installation

CHAPTER 2

Application Configuration

Once the application components are installed and running (regardless of the method utilized), it is necessary to load
appliance and cloud provider connection properties. See this page for how to do this.

5

topics/configuration.html

cloudlaunch Documentation, Release 4.0.0

6 Chapter 2. Application Configuration

CHAPTER 3

Authentication Configuration

User authentication to CloudLaunch should be managed via social auth. For development purposes, it is possible to
use Django authentication in which case simply creating a superuser is sufficient. If you intend on having users of
your CloudLaunch installation, you will want to configure social auth.

7

topics/social_auth.html

cloudlaunch Documentation, Release 4.0.0

8 Chapter 3. Authentication Configuration

CHAPTER 4

Table of contents

4.1 Overview

This section provides a quick overview of the various CloudLaunch pages.

4.1.1 Catalog

Use the catalog to search through the available appliances. A virtual appliance is a virtual machine that packages a
ready-to-run application(s), eliminating the need to install and configure complex stacks of software. (e.g. Galaxy,
Genomics Virtual Lab, SLURM).

4.1.2 Public Appliances

Public Appliances are appliances which have been made publicly available by an organization or individual. Although
these applications are publicly available, they may require registration or impose usage quotas. You can contact us if
you would like to list an applainces as public.

4.1.3 My Appliances

My Appliances lists all currently actie appliances. You can use this page to monitor the state of an appliances or to
delete an appliance. You can also archive an appliance, in which case it will be moved to the Launch History page.

4.1.4 User Profile

Use this section to manage your user profile. You can use this page to save or edit credentials for various clouds.

9

cloudlaunch Documentation, Release 4.0.0

4.2 Installing a production server

4.2.1 Upgrading running chart

1. Fetch latest chart version through helm repo update

2. Docker pull the latest image

sudo docker pull cloudve/cloudlaunch-server:latest
sudo docker pull cloudve/cloudlaunch-ui:latest

3. Upgrade then helm chart

helm upgrade --reuse-values <chart_name> galaxyproject/cloudlaunch

4.2.2 Reinstalling chart from scratch

0. Note down the existing secrets for fernet keys, secret keys, db password etc. through kubernetes in the cloud-
launch namespace. Dashboard access link: https://149.165.157.211:4430/k8s/clusters/c-nmrvs/api/v1/namespaces/
kube-system/services/https:kubernetes-dashboard:/proxy/#!/login

To obtain login token: https://gist.github.com/superseb/3a9c0d2e4a60afa3689badb1297e2a44

kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep
→˓admin-user | awk '{print $1}')

1. helm delete <existing_chart>

2. kubectl delete namespace cloudlaunch

3. Optionally, delete all cached docker images using

docker images
docker rmi

4. Delete existing persistent volume in rancher. This does not delete the local folder, so the database will survive.
Recreate with following settings:

Name: cloudlaunch-database
Capacity: 30
Volume Plugin: Local Node Path
Path on the node: /opt/cloudlaunch/database
Path on node: A directory, or create
Customize -> Many nodes read write

5. helm install galaxyproject/cloudlaunch --set cloudlaunch-server.
postgresql.postgresqlPassword=<pg_password> --namespace cloudlaunch --set
cloudlaunch-server.fernet_keys[0]='<replace with fernet key 1>' --set
cloudlaunch-server.fernet_keys[1]='<replace with fernet key 2>' --set
cloudlaunch-server.secret_key=<replace with secret key>

10 Chapter 4. Table of contents

https://149.165.157.211:4430/k8s/clusters/c-nmrvs/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login
https://149.165.157.211:4430/k8s/clusters/c-nmrvs/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/#!/login
https://gist.github.com/superseb/3a9c0d2e4a60afa3689badb1297e2a44

cloudlaunch Documentation, Release 4.0.0

4.3 Installation for development

CloudLaunch is made up of three services: the server, the user interface (UI), and a message queue. All three processes
need to run for the application to function properly. See instructions below on how to install and start each of the
processes.

4.3.1 Install the server

CloudLaunch is based on Python 3.6 and although it may work on older Python versions, 3.6 is the only supported
version. Use of Conda or virtualenv is also highly advised.

1. Checkout CloudLaunch and create an isolated environment

$ conda create --name cl --yes python=3.6
$ conda activate cl
$ git clone https://github.com/galaxyproject/cloudlaunch.git
$ cd cloudlaunch
$ pip install -r requirements_dev.txt
$ cd django-cloudlaunch

2. Create a local copy of the settings file and make any desired configuration changes. No changes are required for
CloudLaunch to run but it is advisable to at least update the value of the fernet key.

3. Run the migrations and create a superuser

$ python manage.py migrate
$ python manage.py createsuperuser

4. Start the web server and Celery in separate tabs. If you do not have Redis installed, you can install it via Conda:
conda install -c anaconda redis

$ python manage.py runserver
$ redis-server & celery -A cloudlaunchserver worker -l info --beat

5. Visit http://127.0.0.1:8000/cloudlaunch/admin/ to define appliances and add cloud providers.

6. Visit http://127.0.0.1:8000/cloudlaunch/api/v1/ to explore the API.

4.3.2 Install the UI

1. Clone the source code repository

$ git clone https://github.com/galaxyproject/cloudlaunch-ui.git
$ cd cloudlaunch-ui

2. Install required libraries

Make sure you have node (version 6.*) installed (eg, via Conda, conda install -c conda-forge
nodejs). Then install the dependencies.

Install typescript development support
npm install -g tsd
Install angular-cli
npm install -g @angular/cli
Install dependencies
npm install

4.3. Installation for development 11

http://127.0.0.1:8000/cloudlaunch/admin/
http://127.0.0.1:8000/cloudlaunch/api/v1/

cloudlaunch Documentation, Release 4.0.0

3. Run the development server

Start the development server with

npm start

Or if you use yarn as your preferred package manager, yarn start.

Access the server at http://localhost:4200/. The app will automatically reload if you change any of the
source files.

If you are installing this on a VM instead your local machine and need to access the UI over the network, instead
of using npm start, use ng serve --host 0.0.0.0 --disable-host-check --proxy-config
proxy.conf.json The UI should be availale on the host IP address, port 4200.

4.4 Configure CloudLaunch with data

Once running, it is necessary to load the CloudLaunch database with information about the appliances available for
launching as well as cloud providers where those appliances can be launched.

The following commands show how to load the information that is available on the hosted CloudLaunch server avail-
able at https://launch.usegalaxy.org/. It is recommended to load those values and then edit them to fit your needs.

4.4.1 Loading clouds

Appliances define properties required to properly launch an application on a cloud provider. Run the following com-
mands from the CloudLaunch server repository with the suitable Conda environment activated.

cd django-cloudlaunch
curl https://raw.githubusercontent.com/CloudVE/cloudlaunch-helm/master/
→˓cloudlaunchserver/data/1_clouds.json --output clouds.json
python manage.py loaddata clouds.json

If we start the CloudLaunch server now and navigate to the admin console, DJCLOUDBRIDGE -> Clouds, we can
see a list of cloud providers that have been loaded and CloudLaunch can target.

If you would like to add a new cloud provider to be included in either the hosted service or for distribution, please
issue a pull request with the necessary connection properties to https://github.com/CloudVE/cloudlaunch-helm/blob/
master/cloudlaunchserver/data/1_clouds.json

4.4.2 Loading appliances

Rather than loading application-specific information by hand, we can load apps from an application registry in bulk.
At the moment, this action needs to be performed from the CloudLaunch admin console.

On the CloudLaunch admin console, head to the CloudLaunch -> Applications page and click Add
application button in the top right corner. Provide an arbitrary name, say placeholder, for the application name
and click save. Any information provided for this application will get overwritten with the information from the ap-
plication registry. Back on the page listing applications, select the checkbox next to the newly created application and
then from the Action menu, select Import app data from url. Click Update on the next page to load the
default set of applications and your installation of CloudLaunch will have loaded all currently available apps.

12 Chapter 4. Table of contents

https://launch.usegalaxy.org/
https://github.com/CloudVE/cloudlaunch-helm/blob/master/cloudlaunchserver/data/1_clouds.json
https://github.com/CloudVE/cloudlaunch-helm/blob/master/cloudlaunchserver/data/1_clouds.json

cloudlaunch Documentation, Release 4.0.0

4.5 Social Auth Setup

After you have setup the server, you will probably want to setup social auth to be able to log in using an external
service. This setup is required for end-users so they can self register. If you are setting this up on localhost, use
GitHub or Twitter.

4.5.1 Integration with GitHub

1. Register your server with GitHub: Visit your Github account Settings → Developer settings and add a new
OAuth application. Settings should look as in the following screenshot. Note port 4200 on the Authorization
callback URL; this needs to match the port on which the CloudLaunch UI is served (4200 is the default). Also
take note of the Client ID and Client Secret at the top of that page as we’ll need that back in CloudLaunch.

2. Back on the local server, login to Django admin and change the domain of example.com in Sites to http://
127.0.0.1:8080. To login to Admin, you’ll need the superuser account info that was created when setting
up the server.

3. Still in Django Admin, now navigate to Social Accounts → Social applications and add a new application.
Select GitHub as the provider, supply a desired application name, and enter the Client ID and Client Secret we
got from GitHub. Also choose the site we updated in Step 2.

4.5. Social Auth Setup 13

https://github.com/settings/developers
../images/github-oauth-app.png

cloudlaunch Documentation, Release 4.0.0

Save the model and integration with GitHub is complete! You can now log in to the CloudLaunch UI using Github.

4.5.2 Integration with Twitter

1. Register your dev server under your Twitter account. Visit https://apps.twitter.com/, click Create New App, and
fill out the form as in the following screenthot. Once the app has been added, click on the Keys and Access
Tokens tab and take a note of Consumer Key (API Key) and Consumer Secret (API Secret).

14 Chapter 4. Table of contents

../images/add-social-app.png
https://apps.twitter.com/

cloudlaunch Documentation, Release 4.0.0

2. Proceed with the same steps as in the docs about about GitHub integration, supplying the Consumer Key (API
Key) and Consumer Secret (API Secret) as the values of Client ID and Client Secret for the new defintion of the
Social application.

4.5. Social Auth Setup 15

../images/twitter-oauth-app.png

	Installation
	Application Configuration
	Authentication Configuration
	Table of contents

